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Part 1 – Introduction. 

 
Schrödinger's equation[1] is quite useful for calculating the quantum mechanical wave function in 
low velocity situations. Application of Schrödinger's equation to two body states such as the 
hydrogen atom yield good results, as the spectral evidence is in excellent agreement with the 
theory. However, to apply high velocity corrections or to investigate the hyperfine structure caused 
by the spin-spin magnetic dipole interaction, it is necessary to turn to a perturbation analysis. And 
to account for the Lamb shift[2], the perturbative approach of QED[3, 4, 5, 6, 7] is required. While 
QED is spectacularly successful in its calculational ability, the perturbation approach is valid only 
if the perturbations are small when compared to what is being perturbed. In the case of 
electrodynamics, the parameterization factor is given by the fine structure constant, , which is 
approximately 1/137. However, for stronger forces, such as those found in nuclear matter, the 
perturbation approach is ineffective. Furthermore, QED involves the handling of infinities via a 
process called renormalization, a process that is quite distasteful for a physical theory. 
 
The mesons are presently believed to be two body states; yet finding a satisfactory solution for 
determination of their masses has proven elusive. In the ABC Preon Model [8], leptons are 
proposed to be two body states; yet lepton masses have not been theoretically calculable. For these 
reasons, it is of value to find a complete, high velocity, quantum mechanical equation for the 
central force, two body problem. 
 
Here, a formulation for high velocity quantum mechanics will be developed. The approach will be 
to appeal to simple empirical observations, and then apply an assumption of an underlying wave 
in order to reach the result. With the result in hand, it will be shown that the result reduces to 
familiar forms, such as Schrödinger's equation, in the low velocity limit. 
 
In order to present the derivation in the most concise way, Part 2 will now contain only the 
minimum needed to arrive at the results. In Part 3 additional supportive remarks will be given. 
 
Part 2 – Derivation of the Equations. 
 
It is empirically observed for both light and material particles that  
 
 E = h (the Planck-Einstein relation)  (1) 
and  
 p = hk (the de Broglie relation) (2) 
 
In Eqs. (1) and (2) h is Planck's constant divided by 2, p is the momentum vector, E is the energy, 
and an underlying wave is assumed where  is 2f, k is the angular wave vector (k has magnitude 
2/), f is the frequency, and  is the wavelength. The assumption of the underlying wave has 
been supported by interference experiments for both light and matter. 
 
It is also empirically observed that the total energy in the presence of certain forces can be 
expressed as 
 
 E = [p2c2 + m2c4]1/2 + V (3) 
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 In Eq. (3) m is the rest mass of the particle, p is the magnitude of the momentum, c is the speed 
of light and V is the potential energy associated with the forces present. 
 
It is convenient to specify the form of our assumed underlying waves in the form  

  = exp[i(k.x–t)] (4) 
 
In Eq. (4) i is the square root of minus one. Taking derivatives of Eq. (4): 
 
 ∂/∂x = ikx   ,   ∂/∂y = iky   ,   ∂/∂z = ikz (5) 
and  
 ∂/∂t = –i (6) 
 
Differentiating Eq. (4) a second time produces  
 
 ∂2/∂x2 = –kx

2,  ∂2/∂y2 = –ky
2,  ∂2/∂z2 = –kz

2, 
 
which can be combined to form 
 
 ∇2 = –k2 (7) 
 
In Eq. (7) the usual nomenclature for the Laplacian is used, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. At this 
point in the development it is useful to manipulate the empirical relationships E = h and p = hk 
(Eq. (1) and Eq. (2), respectively). Taking the dot product of Eq. (2) with itself and rearranging 
leaves k2 = p2/h2 while rearranging Eq. (1) leaves  = E/h, and substituting these values into 
equations (6) and (7) leaves ∂/∂t = –iE/h and ∇2 = –p2/h2, respectively, which can be 
rearranged as: 
  
 E = ih(∂/∂t)/  (8) 
and  
 p2 = – h2∇2/ (9) 
 
Substituting Eqs. (8) and (9) into Eq. (3) leaves: 
 
 ih(∂/∂t)/ = [– h2c2∇2/ + m2c4]1/2 + V   (10) 
 
Eq. (10) is the complete high velocity quantum mechanical equation. 
 
(See Part 3, Remarks 1, 2, 6 and 7 for an explanation of why differential relationships derived from 
Eq. (4) can be used in the derivation of Eq. (10). See Part 3, Remark 3 to understand what is meant 
by the terminology "high velocity".) 
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Next we will follow closely the typical development when dealing with stationary states where V 
= V(r,t) = V(r). (An excellent presentation of the typical development is given in the textbook by 
Anderson[9].) For such cases,  can be decomposed into temporal and spatial functions:  

 (r,t) = (r)(t) (11) 
 
Substituting Eq. (11) into Eq. (10) yields: 
 
 ih(∂/∂t)/ = [– h2c2∇2/ + m2c4]1/2 + V (12) 
 
Since the left hand side of Eq. (12) is a function of t alone, while the right hand side is a function 
of r alone, each side can be set to some separation constant which we will call En. The resultant 
equation for the left hand side, ih(∂/∂t)/ = En can be solved by inspection, (t) = 0 exp[–it], 
where we recall that E = h. Note that this is the same solution that is found in the typical, low 
velocity treatment using Schrödinger’s Equation. 
 
Turning to the spatial equation, we now have En = [– h2c2∇2/ + m2c4]1/2 + V. This equation can 
be manipulated by bringing V over to the other side and squaring, leaving – h2c2∇2/ + m2c4 = 
[En – V]2, which, after we expand the square, move the mass term to the other side, and multiply 
through by  leaves: 
 
 – h2c2∇2 = [En

2 – 2EnV + V2 – m2c4] (13) 
 
Equation (13) is the complete high velocity quantum mechanical equation for stationary state 
spatial wave functions.
 
As a particularly useful example of Equation (13), we can investigate the case of the hydrogen 
atom, and here it is relevant to bring in two more empirical observations. First, it is empirically 
observed that the potential energy associated with the Coulomb force (the electric potential) is  

 Ve = KcQ1Q2/r  (14) 

In Eq. (14) Q1 is the charge on one of the particles, Q2 is the charge on the other particle, r is the 
distance between the particles and Kc is the Coulomb constant. Second, it is empirically observed 
that the potential energy associated with a spin ½ dipole-dipole interaction (the magnetic potential) 
is  

 Vm = Km12(1–3cos2)/r3  (15) 

In Eq. (15) 1 is the dipole moment associated with one particle, 2 is the dipole moment associated 
with the other particle, r is the distance between them,  is the polar angle, and Km is a constant. 
For our purposes, it is desirable to combine some constants: 

 K1 = KcQ1Q2  (16) 

and  

 K2 = Km12  (17) 
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With Eqs. (14) through (17) this leaves the potential as: 

 V = Ve + Vm = K1/r + K2(1–3cos2)/r3  (18) 

Using Eq. (18) for V, and expanding out the Laplacian in spherical coordinates while suppressing 
the non-contributing variable leaves Eq. (13) as: 

 
h2c2∇2 = [m2c4 + 2EnV – En

2 – V2]=> 
∂2/∂r2 + (2/r)∂/∂r + (1/r2)∂2/∂2 + (cos/r2sin)∂/∂ = (19) 
[m2c4 + 2En{K1/r + K2(1 – 3cos2)/r3} – En

2  
– {K1/r + K2(1 – 3cos2)/r3}2]/h2c2
 

And now expand the square: 

∂2/∂r2 + (2/r)∂/∂r + (1/r2)∂2/∂2 + (cos/r2sin)∂/∂ = 
[m2c4 + 2En{K1/r + K2(1 – 3cos2)/r3} – En

2 – K1
2/r2 – 2K2K1(1 – 3cos2)/r4 (20) 

– K2
2(1 – 3cos2)2/r6]/h2c2 

 
Equation (20) is the exact, high velocity, hyperfine-inclusive form of the quantum mechanical 
wave function for the Hydrogen atom for s-states. (States of non-zero angular momentum will 
include additional terms.) 
 
Part 3 – Remarks. 
 

Remark 1 – The Implicit Assumption. Taking derivatives of the plane wave  = exp[i(k.x–t)] in 
the above treatment leads to relationships between derivatives of  and the quantities k and . The 
empirical relationships E = h and p = hk are then used in conjunction with those derivative 
relationships to obtain p2 = – h2∇2/ and E = ih(∂/∂t)/. Finally, we use the empirical relationship 
E = [p2c2 + m2c4]1/2 + V, along with simple algebra to arrive at Eq. 10, ih(∂/∂t)/ = [– h2c2∇2/ 

+ m2c4]1/2 + V. However,  = exp[i(k.x–t)] is only one solution of Eq. 10, and it is not obvious 
that the relationship between the derivatives of  and the quantities p2 and E will be the same for 
all solutions of Eq. 10. Nor is it obvious that E = [p2c2 + m2c4]1/2 + V will be valid within and 
throughout the wavefunction for all solutions of Eq. 10. This brings out the important implicit 
assumption that has been used in arriving at Eq. 10:  
 
It is implicitly assumed that p2 = – h2∇ 

2/, E = ih(∂/∂t)/ , and E = [p2c2 + m2c4]1/2 + V are 
valid relationships within and throughout all wave functions.  
 

 = exp[i(k.x–t)] (the free particle solution) is simply that solution of Eq. 10 that allows us to 
most easily find the relations for p2 and E in terms of derivatives of  based on empirical, 
macroscopic, observations. The derivation in Part 2 implicitly assumes that the relations found 
from the analysis of plane waves continue to hold within and throughout all microscopic wave 
functions, even for the general case where solutions to Eq. 10 may not be plane waves. 
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Remark 2 – Physical Interpretations. The relationship E = ih(∂/∂t)/ tells us that (∂/∂t)/ is 
proportional to the energy, and the relationship p2 = – h2∇2/ tells us that ∇2/ is proportional to 
the square of the momentum. These facts give us interpretations for what (∂/∂t)/ and ∇2/ are, 
physically, within the wavefunction. 
 
Remark 3 – The Meaning of “High Velocity”. It may not be obvious how Eqs. (10) and (13) are 
“high velocity” equations. Even more confusing might be the concept of “high velocity” in a 
“stationary state” as mentioned in conjunction with Eq. (13). To understand these concepts, first 
note that the low velocity description for the energy of a classical particle is E = p2/2m + V. On 
the other hand, the high velocity description for the energy of a classical particle is Eq. (3), E = 
[p2c2 + m2c4]1/2 + V. The derivation herein uses the high velocity formula for the energy to derive 
the quantum mechanical expressions, and that is one way that Eq. (10) is the complete high velocity 
quantum mechanical equation. Another aspect of “high velocity” can be understood through its 
use in “stationary state” wave functions by appealing to the physical interpretations introduced in 
remark 2 where it is explained that (∂/∂t)/ is proportional to the energy and ∇2/ is proportional 
to the square of the momentum, within the wave function. The internal momentum can involve a 
high velocity, even though the quantum state itself may not change over long periods of time. (The 
state can be stationary in that it does not change, but there can still be internal motion within it.) 
This situation arises in single electron atoms that have highly charged nuclei, where “relativistic 
corrections” are needed to evaluate the energy due to high velocity effects of the wave function 
near the nucleus. However, as will be discussed further in remark 8 below, the treatment herein is 
not relativistic, and so the term “high velocity” is used instead of the term “relativistic”. 
 
Remark 4 – Low Velocity Limit of Eq. (10). It is useful to examine Eq. (10) in the low velocity 
limit. In that limit, the energy associated with the momentum is much less than the rest mass 
energy, h2c2∇2/ << m2c4, and manipulation of the radical in this limit leaves [–h2c2∇2/ + 
m2c4]1/2 = mc2[1 – h2c2∇2/m2c4]1/2 = mc2[1 – h2c2∇2/2m2c4] = mc2 – h2c2∇2/2mc2. Cancelling 
the c2 terms and substituting this into Eq. (10) results in ih(∂/∂t)/ = mc2 – h2∇2/2m + V. At 
this point, since a constant in a potential does not affect the physics, we can absorb mc2 into V, 
and by also multiplying through by  we can find the low velocity limit of Eq. (10) as ih(∂/∂t) = 
– h2∇2/2m + V, which is immediately recognized as Schrödinger’s Equation. 
 
Remark 5 – Low Velocity Limit of Eq. (13). It is also of interest to investigate Eq. (13) in the low 
velocity limit. In this case, we can set En =  + mc2 in Eq. (13), where  is an energy that is small 
in comparison to mc2. This leaves – h2c2∇2 = [( + mc2)2 – 2( + mc2)V + V2 – m2c4] = [2 + 
2mc2 + m2c4 – 2V  –  2mc2V + V2 – m2c4]. V will also be small in comparison to mc2 in the 
low velocity case. Noting that the terms m2c4 cancel, and discarding terms that are second order in 
small quantities, this leaves –h2c2∇2 = [2mc2 –  2mc2V], and dividing through by 2mc2 leaves 
– h2∇2/2m = [ – V], which is recognized as the typical low velocity quantum mechanical 
equation for the spatial component of stationary states. 
 
Remark 6 – A Low Velocity Derivation of Schrödinger’s Equation. Note that Schrödinger’s 
Equation can be derived quickly if we replace Eq. 3 by the low velocity expression E = p2/2m + V 
in the derivation done in Part 2. With our implicit assumptions of p2 = –h2∇2/ and E = ih(∂/∂t)/ 
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we get E = p2/2m + V = ih(∂/∂t)/ = – h2∇2/2m + V, and after multiplying the later equation 
by  we obtain ih(∂/∂t) = – h2∇2/2m + V, which is Schrödinger’s Equation. 
 
Remark 7 – Low Velocity Verification of the Implicit Assumption. The implicit assumption is 
presented in Remark 1: It is implicitly assumed that p2 = – h2∇ 

2/, E = ih(∂/∂t)/ , and E = 
[p2c2 + m2c4]1/2 + V are valid relationships within and throughout all wave functions. The implicit 
assumption is seen in Remark 6 to lead to Schrödinger’s Equation when the low velocity energy 
expression is relevant. Hence, it is reasonable to believe that the implicit assumption will also be 
valid when the high velocity energy expression is relevant. (The doubt about validity of the 
derivation arises because of the departure from the plane wave condition – not because of the form 
of the energy equation.) 
 
Remark 8 – Inconsistency with Relativity. The treatment presented here is not covariant, since Eq. 
(20) describes a wave function spread out over spatial coordinates, but time does not appear in the 
equation. This lack of covariance is the reason for the use of the term “high velocity” rather than 
the term “relativistic” throughout this work, since the treatment herein is not relativistic. 
Relativity[10] is a point-like theory of events in four-space, and the theory presented herein is not 
consistent with such a foundation. Indeed, it is the constraint of relativity that has stopped others 
from already developing what is shown here. Instead, Dirac[11] proposed an equation that involves 
four by four matrices and a four component wave function for a description of electrons and 
positrons. Klein and Gordon[12,13] and Proca[14,15] developed two other covariant approaches 
applicable to other classes of particles. Those manifestly covariant approaches necessarily result 
in more complex treatments than what is described above, and they also involve a departure from 
the classical approach to physics. 
 
Remark 9 – Consistency with Absolute Theories. While the theory proposed above does violate 
relativity, this does not imply that it violates any known experimental results. In addition to 
relativity, the absolute theories of Lorentz[16] and the author[17] are also overwhelmingly 
consistent with all known experimental results. While not greatly appreciated in the year 2017, 
there is almost no predictive difference between the theory of Lorentz and that of Einstein. Indeed, 
the fundamental transformation equations of Einstein’s special relativity are called “the Lorentz 
equations” not “the Einstein equations” because those equations were first proposed by Lorentz, 
not Einstein. The main difference between Lorentz and Einstein lies in the interpretation of the 
Lorentz Equations – the equations themselves are identical. Furthermore, the absolute theories also 
allow for a ready understanding of Aspect, Dalibard, and Roger’s tests[18] of Bell’s theorem[19], 
an understanding that relativity cannot easily provide. (See reference 17 for a more thorough 
discussion of the absolute versus relative theories.) The theory presented here – involving wave 
functions with a finite spatial spread described by a non-covariant equation – fits well within the 
absolute frameworks for space and time, even as it does not fit well within relativity. 
 
Remark 10 – A Return to the Classical Approach. The approach taken in this paper is extremely 
simple: it merely relies on a few empirical observations along with a single assumption of an 
underlying physical wave. No Hamiltonian nor Lagrangian formulations are necessary; no 
underlying principles (such as the relativity principle or the principle of least action) are appealed 
to. Instead, the approach is to return to classical thinking, which involves proposing a simple 
underlying physical model for nature, working from that physical model to develop the 
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mathematical equations, and then analyzing the results of those equations to ensure that they 
accurately predict experimental reality. In this return to a classical approach, both the mathematics 
and the underlying physical model are readily amenable to human understanding. 
 
Remark 11 – Handling of Infinities. Eq. (20) has terms that involve the inverse of r to the fourth 
and sixth power. Those terms will go rapidly to infinity as r tends toward zero. For that reason, the 
author suspects that particles have some sort of finite size. (That is, Eq. (20) may only be applicable 
above some small limiting value, and below that limit, the wave function may be a constant.) One 
either accepts such an ultimate finite size, or one must deal with some unpleasantness equivalent 
to renormalization theory to handle the infinites. As a speculation, a small limiting size may be the 
result of particles being small solid balls. Such small balls may come about because of a preonic[8] 
constituency of matter or perhaps from something even smaller. Alternatively, the small size limit 
may result from just how dense charge can become. For instance, it may be that charge density 
cannot exceed that of an underlying aether[20]. But no matter the source of the finite size, the 
important point for the present work is that a finite size can eliminate the problems that would 
otherwise be present for small r. Note also that the absolute theories can easily allow for finite size 
particles, but that relativity (a point-like theory in four-space) cannot so easily accommodate them. 
 
Remark 12 – Missing Dirac Delta Function in the Magnetic Potential. In contemporary treatments 
of the spin-spin interaction, use is made of a Dirac delta function for the return flux of the magnetic 
field. In this work, since it is assumed that the particles have a finite small size, the return flux will 
be confined within the finite size of the particle and hence the return flux does not play a role in 
the equations. (The equations are not to be applied within the small size of the particles.) 
 
Remark 13 – Applicability to Stronger Forces. While Eq. (20) is derived for the Hydrogen atom, 
Eqs. (10) and (13) are more general, as they allow for different potentials that may be useful in 
other situations. Calculations of lepton and meson masses can now in principle be treated, since 
the non-perturbative quantum mechanical Eqs. (10) and (13) can be applied to those situations 
where perturbative approaches are not feasible. Of course, it remains to specify the function V for 
those cases. 
 
Remark 14 – The Lamb Shift. The standard quantum mechanical treatment of the Hydrogen atom 
does not completely predict experimental results. Famously, the quantum mechanical treatment 
falls short as it does not predict the Lamb shift, where a very small difference is found from what 
is predicted by quantum mechanics. Only when a full QED treatment of radiative corrections is 
applied can the Lamb shift be predicted. However, as mentioned above, QED involves the process 
of renormalization which is itself a rather dubious technique. The equations presented herein are a 
new approach to quantum mechanical predictions and at this point it is not clear to the author 
whether additional corrections will be needed. The p state wave functions have zero value at the 
origin while s states have a finite value. If there is a small limiting size for the particles, this 
difference between p and s states near the origin may lead to a difference in energy levels due to 
the proposed small hard core, although this is mere speculation at this point. 
 
Remark 15 – Difficulty of Finding Analytic Solutions. The author was unable to find analytic 
solutions to Eq. (20) despite considerable effort. It may be that numerical methods will be required 
in order to find solutions to Eq. (20). 
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Remark 16 – Further Research. Eventually, application of the treatment herein should enable 
advances in our understanding of forces stronger than that of electromagnetism. However, prior to 
those studies it would be useful to apply Eq. (20) to the hydrogen atom using numerical techniques. 
If Eq. (20) is truly representative of nature, both the hyperfine splitting and the high velocity 
corrections to the Hydrogen energy levels should be predicted, and as mentioned above, the Lamb 
shift may be predicted as well. 
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Introduction. (draft 5-22-2017) 
 
This paper concerns the ABC Preon Model, which is an elementary particle model for what makes 
up our world. At the time of writing, the established elementary particle is know as the "Standard 
Model". There is a substantial difference in thought between the ABC Preon Model and the 
Standard Model, and to better understand the remainder of this work it is helpful to review some 
important history. 
 
A distinct demarcation in physics occurred in 1905 when classical physics gave way to what is 
known as modern physics. This demarcation was of course the result of the path breaking work of 
Einstein's special relativity theory, or SRT. In SRT, Einstein abandonned the classical idea that 
physics should be based upon a mental picture involving underlying models or concepts. Instead, 
SRT was the first significant work to build upon positivist philosophy promoted by Ernst Mach. 
Positivist philosophy asserts that underlying models and concepts are unnecessary, since all we 
can really be certain of are empirical results. Einstein used this philosophy to derive the Lorentz 
transformation equations for space, time and electromagnetism based upon an operationalist 
approach starting with simple postulates. In doing this, Einstein not only revolutionized our 
thinking about space and time, but he also revolutionized how physics was done. Underlying 
models and concepts that themselves could not be proven - such as the aether, or primitive concepts 
of space and time - were abandonned as superfluous. Replacing the underlying models and 
concepts were simple principles which could then be used as the starting point for the derivation 
of mathematical formulas. The important issues were only sound principles, logical derivation of 
the mathematical formulas, and a requirement that those mathematical formulas must predict 
accurately the empirically observed data. 
 
Work on quantum mechanics embraced the new paradigm of a model-free physics, and the 
developments of Dirac and others further separated the mathematics from any recognizable 
underlying model for nature. Whereas the wavefunction of Schroedinger could perhaps be thought 
of as the square root of the density of a real existing object, the four-spinors and sixteen component 
(4 by 4) matrices of Dirac defied understanding within such a simple worldview. At the present 
time the Standard Model is a glorious instantiation of the more primitive vision foreseen by Mach 
and Einstein, as it involves an equation with over 150 terms and at least 19 free parameters. The 
Standard Model now stands as a definitive description of nature that is well backed by all presently 
existing, empirically observed data. 
 
However, the shear complexity of what now stands as the Standard Model should perhaps give us 
pause. Is there a better way? Could we have gone too far in the direction that Mach and Einstein 
have directed us? While the positivist idea of the supremacy of empirical observations is a sound 
philosophical assertion, could it not yet also be true that nature adheres to underlying concepts and 
modeling along the lines of what the classical physicists believed? 
 
In what follows, an underlying model for elementary particle physics will be described that returns 
to the classical way of thinking. A model is proposed the envisions real, existing particles - called 
preons - that will be theorized to be the underlying cause for presently observed experimental 
results. 
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One example of the different way of looking at things concerns the Weinberg angle. In the present 
Standard Model approach, the Z and W boson masses are related through the relation cos(theta_W) 
= m_w/m_z, where theta_W is the Weinberg angle. The Weinberg angle also plays a role in the 
Weinberg-Salam theory of the electroweak interaction as it is the angle associated with 
spontaneous symmetry breaking and it also relates to the coupling strengths associated with the 
group theoretical underpinning of the weak force.  
 
In the classical worldview of the ABC Preon Model the W and Z are understood to simply be 
unbound preon pairs with the mass of what is known as a W simply being the sum of the masses 
of the B and anti-A preon, and the mass of what is known as the Z simply being the sum of the 
masses of the A and anti-A preon. The Weinberg angle does not play an important part in arriving 
at the ABC Preon Model. Unlike the substantial mathematical underpinning of the Standard 
Model, there is no such mathematical underpinning in the ABC Preon Model. Rather than a 
mathematical underpinning, there is an assumed model for an underlying physical existence. In 
both cases, there is an agreement with experimental data. However in the presently prevailing view 
the experimental data arises from a deep principle followed by a mathematical derivation, while 
in the classical view of the ABC Preon Model the data arises from proposition of a simple classical 
model. 
 
The ABC Preon Model is presently at a very early stage in its development, as it has been worked 
on by a single individual for only a few years. This is in contrast to the Standard Model which has 
seen tens of thousands of person-years put into its development over the past several decades. 
Presently, the ABC Preon Model does not include any variation (running) of its constants, and it 
has very limited mathematical underpinnings. The author would certainly welcome the 
contributions of others to improve upon this situation in the future. Yet despite the lack of 
mathematical underpinnings, since it is a preon model, the ABC Preon Model does dovetail nicely 
into the Standard Model, as certain combinations of preons are seen to be the components of the 
massive leptons, and other combinations of preons are seen to be the components of hadronic 
matter. 
 
Since the ABC Preon Model is a reversion back to a classical approach to physics it has little 
connection with present efforts to extend the Standard Model or to attempts at a Grand Unified 
Theory. But despite the fact that the ABC Preon Model uses what appears to be a more primitive 
thought process to arrive at its conclusions, it is still shown below that numerous puzzles of nature 
are solved by the model. The generational problem is readily understood, and a great reduction in 
the number of elementary consitituents and forces are obtained by the postulate that the ABC 
Preons actually exist in nature. And perhaps most important is the predictive power of the ABC 
Preon Model. As seen below, by using only three free parameters - the preon masses - 18 
quantitative predictions can be made for the results of high energy physics experiments, six of 
which have already been seen. 
 


