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Abstract: Quantum mechanics presently has many unanswered questions, paradoxes, and even

outright logical contradictions. To make progress in understanding quantum mechanics, we begin

by proposing that relativity be set aside in favor of an absolute aetherial theory. Once that step is

taken, we can understand quantum collapse as a description of real wave-packets collapsing in a

faster-than-light way. By assuming that a partially observable reality exists, we can then extend our

analysis of wave-packets into the subquantum, and the Heisenberg uncertainty principle then fol-

lows from the Fourier uncertainty principle coupled with the de Broglie relation. Further progress

in understanding quantum mechanics is possible by modifying the de Broglie and Planck relations.

Those modifications lead to matter-waves moving at the speed of light rather than superluminally

as presently theorized, and they allow the results of matter-wave two-slit experiments to be under-

stood from any reference frame. A modified time-dependent Schr€odinger Equation results from our

modifications, but the spatial time-independent Schr€odinger equation is retained. VC 2024 Physics
Essays Publication. [http://dx.doi.org/10.4006/0836-1398-37.2.133]

R�esum�e: La m�ecanique quantique comporte actuellement de nombreuses questions sans r�eponse,

des paradoxes et même de pures contradictions logiques. Pour progresser dans la compr�ehension

de la m�ecanique quantique, nous commençons par proposer que la relativit�e soit mise de côt�e au

profit d’une th�eorie �eth�er�ee absolue. Une fois cette �etape franchie, nous pouvons comprendre

l’effondrement quantique comme une description de v�eritables paquets d’ondes s’effondrant plus

rapidement que la lumière. En supposant qu’une r�ealit�e partiellement observable existe, nous

pouvons alors �etendre notre analyse des paquets d’ondes au sous-quantique, et le principe d’incerti-

tude de Heisenberg d�ecoule alors du principe d’incertitude de Fourier coupl�e �a la relation de Bro-

glie. Des progrès suppl�ementaires dans la compr�ehension de la m�ecanique quantique sont possibles

en modifiant les relations de Broglie et Planck. Ces modifications conduisent �a des ondes de mat-

ière se d�eplaçant �a la vitesse de la lumière plutôt que de manière supraluminique comme actuelle-

ment th�eoris�e, et elles permettent de comprendre les r�esultats des exp�eriences �a deux fentes

d’ondes de matière �a partir de n’importe quel cadre de r�ef�erence. Une �equation de Schr€odinger

modifi�ee et d�ependante du temps r�esulte de nos modifications, mais l’�equation de Schr€odinger spa-

tiale et ind�ependante du temps est conserv�ee.
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I. INTRODUCTION

Since its inception, quantum mechanics has been diffi-

cult to understand. Interference experiments show that enti-

ties sometimes behave like distributed waves, while

scattering experiments show that entities sometimes behave

like particles. This behavior led to the idea of a wave/particle

duality. The concept of a wavefunction was introduced

wherein the square of the wavefunction is the probability

density of where an underlying particle will be found. The

wavefunction is a distributed entity, and it can therefore

interfere, and certain events can cause it to collapse to a

much smaller state. However, this concept of quantum

mechanics is inherently in conflict with Einstein’s relativity,1

an issue most famously raised by Einstein, Podolsky, and

Rosen2 (EPR). Bell3 extended the work of EPR, and Aspect,

Dalibard and Roger4 provided experimental validation of

Bell’s inequalities, showing that quantum mechanics does

indeed give correct predictions in spite of its confrontation

with relativity.

Part of our inability to understand quantum mechanics

comes from two fundamental contradictions often found in

quantum mechanics interpretations: (1) a quantum collapse

exists that must be (via Bell3) and yet cannot be (via Ein-

stein1) a faster-than-light phenomenon; and (2) the ultimate

nature of physical entities is that they are both a particle and

a wave. Since these are statements of contradiction, they of

course cannot be understood. Here we will eliminate these

contradictions by asserting single choices for each: (1) quan-

tum collapse is a faster-than-light phenomenon; and (2) the

ultimate nature of physical entities is that they are never

point-like particles. Since relativity is a point-like theory in a

curved four-dimensional space-time continuum, and relativ-

ity also precludes faster-than-light phenomena, both of our

assertions confront relativity. Hence, we shall set relativity

aside. Instead we will adopt the absolute theory of thea)del@particlebeamlasers.com
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Quantum Luminiferous Aether,5 which returns us to a flat

three dimensional Euclidean space and an absolute time

which includes absolute simultaneity: the Quantum Luminif-

erous Aether theory is a continuum theory that allows faster-

than-light collapse.

II. THE IMPULSE-INITIATED-COLLAPSE
INTERPRETATION

To better understand quantum mechanics, we will begin

with a simple physical interpretation for observed quantum

behavior:

The impulse-initiated-collapse interpretation: A wave-

function experiencing an impulse undergoes a faster-than-

light collapse determined by:

dx � �=2dp: (1)

In Eq. (1), dx is the post-impulse spatial spread of the wave-

function, dp is the relevant impulse, and � is Planck’s con-

stant h divided by 2p. If a high energy probe collides with a

free particle wavefunction, the probe will either pass through

the wavefunction or it will collapse the wavefunction to a

size given by Eq. (1). In this case, the relevant impulse is the

full momentum that the probe imparts to the wavefunction.

In our interpretation there are no issues involving what

is or is not the “environment,” what is or is not being

“measured,” nor who or what an “observer” is: collapse

occurs whenever an impulse affects a wavefunction. In situa-

tions where a tightly localized collapse of a free entity is

required in some regions but not in others (such as the two-

slit experiment) the collapse either occurs to a single small

region dx where such a collapse is required, or to the entire

region where no tightly localized collapse is required.

For bound quantum states it is possible for the impulse

to either cause a transition to another bound state, or to eject

the quantum out of its bound state and into a free state. If the

quantum is transitioned to another bound state, the size of

the quantum becomes that of the new bound state. If the

quantum becomes freed, the relevant impulse dp used in

Eq. (1) is the momentum excess above and beyond what it

takes to free the entity from its binding. If we barely have

enough energy in our probe to free the entity, the entity will

have relatively low spreads of energy and momentum after

the impulse. This will lead to a larger entity size than if the

entire impulse had been transferred to an equivalent free

entity.

For the case of mirrors, an individual photon can interact

with many electrons and be reflected. The relevant impulse

at each photon/electron interaction involves only a very

small fraction of the photon’s total momentum, and Eq. (1)

is applied using that small momentum fraction at each partic-

ipating electron/photon interaction. Since Eq. (1) describes a

collapse size that is inversely proportional to the relevant

impulse, this results in a very large size (dx) for the collapse

in this case. Indeed, the collapse can occur over the entire

mirror surface. Similarly, photons interacting with lenses

involve many electrons rather than one. In that case, the

impulse involved in the lensing action is again spread over

so many electrons that the collapse can occur over the entire

lens.

In every situation Eq. (1) applies. Here we are interpret-

ing Heisenberg’s6 uncertainty principle not only as a limita-

tion on our ability to observe, but also as a fundamental

attribute of quantum entities. Each entity has a spatial spread

and a momentum spread, and those spreads change whenever

the entity’s wavefunction collapses due to an impulse event.

Our impulse-initiated-collapse interpretation enables an

understanding of the physics of quantum collapse experi-

ments, and it is consistent with our assertion setting aside the

dogma of wave-particle-duality. Instead, we propose that

there are no point-like particles in nature at all. There are

only finite-sized bodies undergoing wave-like motions.

Sometimes these entities are quite spatially extensive, and

other times they are well localized, but they are never points.

This approach avoids the infinity problems associated with

point-like particles.

III. A PHYSICAL MODEL OF LIGHT

Importantly, our proposal involves an assertion that we

set relativity aside and return to the concept of an aether.

And with an underlying model of light as of a wave upon the

aether, we can now understand what is happening in the

quantum collapse of a photon. Prior to collapsing at a wall, a

photon consists of undulating aether over a large volume.

The volume can for now be envisioned as being bounded by

a rectangular box. One face of the bounding box is a large

area parallel to the wall. Once the wavefunction collapses,

the bounding box has a much smaller area parallel to the

wall. Our model of the collapse process is hence one where a

small undulation within a large box goes to zero in most of

the large box, except for the region of a small box wherein

the undulation becomes larger.

Notice that our description of a photon is now contem-

plating what is going on inside of the quantum: we are doing

a subquantum analysis. This is possible because of our fun-

damental axiom in Ref. 5, which states that a partially
observable reality exists. While we can’t make observations

within the subquantum, we nonetheless can postulate that it

is real, and we are free to analyze it. This is different from

the presently prevailing view that we can’t do such an analy-

sis, and it is one of the aspects needed to improve our under-

standing of quantum mechanics.

Next, we will advance beyond our simplistic model of a

photon as undulations within a box and consider a model of

a photon as a Gaussian wave-packet. That Gaussian will

have a standard deviation of rX in the x spatial dimension.

Taking the Fourier transform results in a view of the photon

as being a wave-packet in the conjugate wave-number space,

showing that the photon is made up of classical sinusoidal

aetherial oscillations over a range of wave-numbers. As is

well-known, the Fourier transform of a Gaussian is itself a

Gaussian, and with an appropriate choice of convention it

has a standard deviation rK such that rXrK¼ 1/2. It is also

well-known that the Gaussian case presents a lower limit for

rXrK and hence more generally:
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rXrK � 1=2 the Fourier uncertainty principleð Þ: (2)

We will now bring in two empirical equations governing

light:

E ¼ �x the Plank relation7ð Þ; (3)

p ¼ �k the de Broglie relation8
� �

: (4)

In Eqs. (3) and (4), x is 2pf, f is the frequency, k is the angu-

lar wave vector (k has magnitude 2p/k), k is the wavelength,

p is the momentum, and E is the energy. Taking the

magnitudes of p and k, the de Brogle relation is p¼�k and

hence rP¼�rK. Substituting rK¼rP/� leaves Eq. (2) as

rXrP � �/2, which is Heisenberg’s uncertainty principle,6

equivalent to Eq. (1). Hence, a model of the underlying sub-

quantum reality of the photon as a wave-packet leads directly

to Heisenberg’s uncertainty principle.

It is already widely known that the Fourier uncertainty

principle leads to Heisenberg’s. Not presently appreciated

are the realizations that: (1) we can indeed do a subquantum

analysis; (2) the photon component waves continue to obey

Maxwell’s equations within the subquantum realm; (3)

faster-than-light collapse is possible; and (4) there is no

wave/particle duality, only collapsing wave-packets. These

realizations allow for an improved understanding of the

quantum mechanics of light, as the photon subquantum can

be understood as being governed by Maxwell’s equations for

each component frequency making up a wave-packet, while

the collapse of the wave-packet envelope is governed by

Eq. (1) in every situation.

IV. PLANCK/DE BROGLIE MATTER-WAVES

With a physical model now allowing an understanding

of the quantum mechanics of light, we turn next to consider-

ation of matter-waves. Matter is different than light. Here

we’ll use the term matter to mean anything that: (1) is extrin-

sic to the aether; and (2) has a rest mass. We will temporarily

assume that Eqs. (3) and (4), the Planck and de Broglie rela-

tions, will also apply to matter-waves and we’ll assume that

an underlying matter-wave exists

n ¼ exp iðk � x–xtÞ½ �: (5)

In Eq. (5), n is a displacement of the matter, i is the square

root of minus one, x is the three-dimensional spatial coordi-

nate vector, and t is the time. It is our assumption of an

underlying wave, expressed in Eq. (5), that introduces our

underlying physical model. Taking derivatives of Eq. (5):

@n=@x ¼ ikxn; @n=@y ¼ ikyn; @n=@z ¼ ikzn (6)

and

@n=@t ¼ –ixn: (7)

Differentiating Eqs. (6): @2n/@x2¼�kx
2n, @2n/@y2¼�ky

2n,

and @2n/@z2¼�kz
2n; which can be combined to form

r2n ¼ –k2n: (8)

Equation (8) uses the usual nomenclature for the Laplacian,

r2¼ @2/@x2þ @2/@y2þ @2/@z2. We now take the dot product

of Eq. (4) with itself, and rearranging leaves k2¼ p2/�2 while

rearranging Eq. (3) leaves x¼E/�, and substituting these

values into Eqs. (7) and (8) leaves @n/@t¼�iEn/� and

r2n¼�p2n/�2, respectively, which can be rearranged as

E ¼ i�ð@n=@tÞ=n; (9)

p2 ¼ –�2r2n=n: (10)

Now recall the low energy expression for energy

E ¼ p2=2mþ V: (11)

In Eq. (11), m is the entity’s mass and V is the potential

energy. Next, we substitute expressions (9) and (10) into

Eq. (11):

i�ð@n=@tÞ=n ¼ –�2r2 n=2mnþ V: (12)

And now we multiply through by n:

i�ð@n=@tÞ ¼ –�2r2n=2mþ Vn: (13)

Equation (13) is recognized as Schr€odinger’s equation.9 We

have derived Eq. (13) from the empirical Eqs. (3), (4), and

(11), our physical model of Eq. (5), and simple calculus and

algebra. Importantly, we assume that Eqs. (9) and (10),

which are derived from the free state solution given by Eq.

(5), also hold for the bound states described by Schr€odinger’s

equation.

V. PROBLEMS WITH PLANCK/DE BROGLIE MATTER-
WAVES

With Schr€odinger’s equation now derived, we can again

turn to the issue of an underlying subquantum reality, this

time for matter-waves. We’ll see that an underlying model

based on Eqs. (3), (4), (5), and (13) has a couple of signifi-

cant problems.

Recall Eq. (5) which defines the matter-wave,

n¼ exp[i(k.
x�xt)]. For one dimension, we can manipulate

this to n¼ exp[i(kx�xt)]¼ exp[ik(x�xt/k)]. Introducing

the matter-wave phase velocity, w¼x/k, we obtain

n¼ exp[ik(x�xt/k)]¼ exp[ik(x�wt)]. Above we found

x¼E/� and k2¼ p2/�2 and taking the square root of the lat-

ter we get w¼x/k¼E/p. With c the speed of light, v the

matter velocity, c¼ [1� v2/c2]�1/2, E¼ cmc2 and p¼ cmv,

we see that w¼E/p¼ cmc2/cmv¼ c2/v. Now, v can certainly

be zero, and this leads to an infinite phase velocity in that

case. Within the status quo, singularities are accepted, but

under our realist approach the phase velocity is a physical

attribute and singularities are unacceptable.

A second problem becomes apparent if we arrange an

electron beam to have a low momentum spread and pass it

through two slits. Doing so will lead to a two-slit interfer-

ence pattern similar to that obtained in Young’s two slit

experiment for light. Presently, the wavelength of the elec-

trons is theorized to be that given by the de Broglie condi-

tion, k¼ h/p, where p is the magnitude of the momentum of
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the electrons as determined from any reference frame. [The

de Broglie condition follows from Eq. (4).] Under the stan-

dard simple analysis, we expect the interference fringes to be

spaced by zk/d where d is the separation distance between

the two slits and z is the distance between the slitted wall and

the downstream wall. This expectation agrees with observa-

tions when we are at rest with respect to the walls. But if we

observe that very same experiment from a spaceship moving

along with the electrons, the electron velocity will be zero.

From that frame the momentum p is zero and by the de Bro-

glie relation k is infinite, the fringe spacing is calculated to

be infinite, and we expect no interference pattern. Yet it is

the same experiment, just viewed by different observers, so

this is a second problem with real matter-waves based on

Eqs. (3)–(5) and (13).

Notice that we retain the term “frame of reference” even

though we are using an absolute theory. We are keeping the

Lorentzian physical length contraction and time dilation and

we interpret the Lorentz transformation equations just as

Lorentz did: observers moving through the aether arrive at a

“fictitious” coordinate system due to their faulty instruments.

Each fictitious coordinate system is a frame of reference, and

the Lorentz transformation between such coordinate systems

is the same as what relativity gives us.

Note that the paradox for matter-waves in a two slit

experiment does not exist for light. In the case for light, con-

sider first the lab frame with a distance between the walls of

z0, a separation of the slits of d, and an original light wave-

length of k0. In the lab we calculate and observe interference

fringes to be spaced by z0k0/d. Next, consider a second

observer moving toward the light. In that frame, the two

walls will be moving in the direction the light, the distance

between the walls will be length contracted, and the light

will be blueshifted. From the moving frame, the time T2 it

takes for light to get from the slitted-wall to the second wall

is

T2 ¼ ðz0=cþ vT2Þ=c: (14)

In Eq. (14), the second wall moves a distance vT2 during the

transit time T2, and so the total transit distance is vT2 plus

the distance between the walls, which is z0/c because of the

length contraction of the moving apparatus. The total dis-

tance the light travels between the walls is z2¼ cT2. From

Eq. (14), we find T2(c� v)¼ z0/c so T2¼ z0/[c(c� v)].

Hence, we get z2¼ cT2¼ cz0/[c(c� v)]¼ z0/[c(1� v/c)]. The

blueshifted light is Doppler shifted to a wavelength of

k2¼ c(1� v/c)k0. The fringe separation is z2k2/d¼ {z0/

[c(1� v/c)]}c(1� v/c)k0/d¼ z0k0/d. We see that the second

problem that we found for matter-waves does not occur for

light.

VI. A REALIST MODELING OF MATTER-WAVES

Note that Eqs. (3) and (4) are empirical equations. Since

we are running into difficulty in understanding we will now

propose alternatives. Instead of de Broglie’s Eq. (4), we will

now propose the following fundamental relationship for mat-

ter-waves:

pS ¼ �kS: (15)

Equation (15) proposes that the wavenumber of the matter-

wave is determined by its source: kS is the wavenumber and

pS is the matter momentum where each is evaluated from a

frame of reference moving along with the matter-wave

source. We will define the matter-wave source velocity as

the velocity of the center of mass of the entities involved in

the wavefunction collapse. Ignoring the small recoil: for

electrons leaving a neutron in beta decay, the source is the

neutron; for electrons leaving a metal cathode, the source is

the cathode; for the two-slit experiment, the source for the

matter-waves is the apparatus. Upon each wavefunction col-

lapse, a new source velocity is established based on the cen-

ter of momentum of the interacting entities involved.

Since kS¼ 2p/kS, where kS is the magnitude of kS, Eq.

(15) results in kS becoming infinite when pS goes to zero, but

an infinite kS is not a physical problem. We postulate that

any physical entity can be described as a wave-packet which

can be decomposed into a Fourier integral of fixed-

wavelength waves, and this does involve a case where kS is

infinite, but this case is merely a constant displacement

within the integrand. Since both a wave-packet and its Fou-

rier transform rapidly approach zero far from the wave-

packet center we have no problem with a physical infinity

here.

Next, instead of Planck’s Eq. (3), we will now propose

the following fundamental relationship for matter-waves:

ES ¼ �xsc=vS: (16)

In Eq. (16), xS is the angular frequency of the matter-wave,

vS is the matter velocity as observed in the source frame,

cS¼ [1� vS
2/c2]�1/2, pS¼ cSmvS, and ES is the matter energy

evaluated in the source frame, ES¼ cSmc2. Taking the mag-

nitude and rearranging Eq. (15), kS¼ pS/�¼ cSmvS/�. And

rearranging Eq. (16), xS¼ vSES/�c¼ vScSmc/�. Hence, the

phase velocity of matter-waves in the source frame is

wS ¼ xS=kS ¼ vScsmc=��=½cSmvS=�½ � ¼ c: (17)

Note that even though the phase velocity of matter-waves is

now found to be the speed of light, there is no issue with

matter moving at the speed of light. During a half period, the

matter will move a distance 2A from crest to trough, where A
is the amplitude of the wave. Meanwhile, the wave will

move a distance k/2 during the half period. Hence, the veloc-

ity of the matter will be [2A/(k/2)]c¼ 4Ac/k. Provided 4A�
k, the matter velocity in the direction perpendicular to the

matter motion will be much less than the speed of light.

Also note that Eq. (15), pS¼ �kS, leads to vS going to

zero when kS goes to zero, and with Eq. (17), xS/kS¼ c, we

have xS¼ ckS and, hence, xS also goes to zero when kS goes

to zero and there is no problem with an infinity in Eq. (16)

when vS goes to zero.

Our proposed modifications of the de Broglie and Planck

equations address both matter-wave problems discussed in

Section V above. We no longer have infinite phase veloci-

ties; matter-waves always travel at the finite speed of light.

We can now understand the two-slit matter-wave experiment
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in any reference frame. In the source frame, we do so by the

usual analysis. And now, since the phase velocity of the

matter-wave moves at the speed of light, we have the same

Doppler shift for matter-waves that we have for light. The

calculation of the fringe separation from a moving frame is

the same as that discussed at the end of Section V for light.

Also, notice that our proposed modifications of the de Bro-

glie and Planck equations can be applied to light as well as

to matter-waves. For light, vS¼ c, and in that case Eq. (16)

becomes ES¼ �xSc/vS¼�xS, and we can identify a source

frame for light just as we do for matter-waves.

Next, we wish to obtain an understandable physical

model for the underlying matter-waves. Let us now again

assume an underlying wave and use a modified version of

Eq. (5):

nS ¼ exp iðkS � xS–xStSÞ½ �: (18)

In Eq. (18), the S subscript designates quantities evaluated in

the source frame. We differentiate Eq. (18) to achieve: @nS/

@t¼�ixSnS, or xS¼ i(@nS/@t)/nS, and r2nS¼�kS
2nS. We

can use kS
2¼ pS

2/�2, this time achieved from Eq. (15). From

Eq. (16), we also have ES¼ �cxS/vS, which leads to

p2
S ¼ –�2r2 nS=nS; (19)

ES ¼ i�cð@nS=@tÞ=nSvS: (20)

We’ll now use the low energy form of the energy,

ES¼ pS
2/2mþVS and then substitute in Eqs. (19) and (20):

i�cð@nS=@tÞ=nSvS ¼ –�2r2nS=2mnS þ VS: (21)

We now multiply through by nS,

i�cð@nS=@tÞ=vS ¼ –�2r2nS=2mþ VnS: (22)

Equation (22) is no longer Schr€odinger’s equation, as we

have an extra factor of c/vS multiplying the term on the left-

hand side and we use variables with respect to the source

frame. We can next derive the more exact version of

Eq. (22) by using the general energy expression:

ES ¼ ½p2
Sc2 þ m2c4�1=2 þ VS: (23)

Next, we substitute expressions (19) and (20) into Eq. (23)

i�cð@nS=@tÞ=nSvS ¼ –�2c2r2nS=nS þ m2c4
� �1=2 þ VS:

(24)

Equations (22) and (24) are the new quantum mechanical

formulas for our realist quantum mechanics.

While the factor vS appears in the denominator in

Eqs. (20)–(22), and (24) this does not lead to an infinity

when vS becomes zero. In each case, @nS/@t appears in the

numerator and when vS vanishes nS becomes a constant so

@nS/@t also vanishes. (Both kS and xS go to zero as vS goes

to zero, so nS¼ exp[i(kS�xS�xStS)] becomes a constant

when vS goes to zero.)

For the case of time-independent potentials, n can be

decomposed into temporal and spatial functions,

nS r; tð Þ ¼ W rð ÞU tð Þ: (25)

Substituting Eq. (25) into Eq. (21) yields

i�cð@U=@tÞ=UvS ¼ –�2r2W=2mWþ VS: (26)

We now set each side of Eq. (26) to a separation constant EN

leaving

EN ¼ i�cð@U=@tÞ=UvS; (27)

EN ¼ –�2r2W=2mWþ VS: (28)

Using Eq. (16), ES¼ �xSc/vS, and assigning EN¼ES, Eq. (27)

becomes i�c(@U/@t)/UvS¼ �cxS/vS or i(@U/@t)/U¼xS, and

this can be solved by inspection,

U tð Þ ¼ U0 exp –ixSt½ �: (29)

Equations (28) and (29) are the usual equations derived from

the Schr€odinger equation that we use to solve problems for

infinite square wells, simple harmonic oscillators, and the

hydrogen atom.

For the general case, we can substitute Eq. (25) into

Eq. (24) to obtain

i�cð@U=@tÞ=UvS ¼ –�2c2r2W=Wþ m2c4
� �1=2 þ VS:

(30)

We can set each side of Eq. (30) to a separation constant EN.

Since the left-hand side of Eq. (30) is the same as the left-

hand side of Eq. (26) we again arrive at Eqs. (27) and (29)

for the time dependent equation. For the spatially dependent

equation, we obtain

EN ¼ –�2c2r2W=Wþ m2c4
� �1=2 þ VS: (31)

We now bring VS over to the left side and square both sides,

leaving ��2c2r2W/Wþm2c4¼ [En�VS]2, which, after we

expand the square, move the mass term to the other side, and

multiply through by W leaves

–�2c2r2W ¼ ½En
2–2EnVS þ VS

2–m2c4�W: (32)

In a 2017 paper,10 we derived Eqs. (29) and (32) starting

from the traditional Planck and de Broglie relations. Note

that our proposed changes to the Planck and de Broglie rela-

tions only affect the wave phase velocity, the equations

involving time-dependent potentials, and the temporal equa-

tions resulting from time-independent potentials. The spatial

equations resulting from time-independent potentials are left

unchanged.

And now let us examine the underlying subquantum

reality for matter-waves. We postulate that free matter enti-

ties will support a wave-packet motion, and each Fourier

component of the wave-packet will obey Eq. (18), nS¼ exp

[i(kS�xS�xStS)]. Equation (17) relates that the matter-waves

move at the speed of light c¼xS/kS. Yet, the velocity of

matter propagation is vS< c. Therefore, the matter-waves

move upon the matter and not at the same speed as the mat-

ter. The displacement nS is perpendicular to the direction of

the matter propagation.
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A matter wave-packet consists of waves, wherein each

wave is expressed by Eq. (18). The Fourier transform of a

wave-packet in a spatial dimension again results in the Fou-

rier uncertainty principle of Eq. (2), rXrK � 1/2, just as we

had for light. With Eq. (15), pS¼�kS, we again arrive at the

Heisenberg uncertainty principle, rXrP � �/2, just as we did

for light. However, unlike light which always moves at speed

c, each solution to Eq. (18) will be associated with matter

propagating at different velocities as we have cSmvS¼ pS¼�kS.

Each matter entity will have a momentum spread rP and the

matter entity will be dispersive.

Matter-waves and aetherial oscillations both travel at the

speed of light c¼ [TA/mA]1/2 where TA is the aetherial tension

per unit area and mA is the aetherial mass density. (See Ref.

5.) Since TA and mA are aetherial quantities unrelated to the

matter quantities, we conclude that each matter-wave is cou-

pled to an aetherial oscillation, and it is the properties of the

aether that determine the speed of the matter-waves.

When an impulse occurs, we postulate that a wave

motion is initiated on the matter, with the wave moving in

the direction of the impulse, and then that wave reflects from

the end of the matter and the matter acquires a standing

wave. The wavelength of the matter wave in the source

frame is specified through Eq. (15), pS¼ �kS. The matter

will always have the wave motion determined from the last

time it experienced an impulse. When it gets a new impulse,

it acquires new values for vS, pS, kS, and xS. So not only

does the impulse reset the spatial and momentum spreads of

the matter entity through Eq. (1), but it also gives the matter

entity new momentum and wave characteristics.

In bound states, the solution for nS is given by Eqs. (25),

(28), and (29) for the low velocity cases and Eqs. (25), (32),

and (29) generally. Equation (29) reveals a standing wave

within bound states, which breaks down into counter-

propagating waves traveling at speed c just as we’ve seen for

free states. [Equations (15)–(18) are the foundation for fur-

ther equations, so the matter waves travel at speed c within

bound states just as they do in free states.]

We now have a physical model for the underlying sub-

quantum reality of matter. In the appropriate frame, matter-

waves consist of standing waves for both bound and free

entities. Matter-waves, moving at speed c, are waves upon

the matter while the matter itself moves at speed vS in the

source frame. And free physical matter entities contain a

wave-packet of matter-waves.

VII. SUMMARY AND CONCLUSION

Here, we have proposed three significant changes to

quantum mechanical thinking. The first and most radical

change is to set relativity aside. Once that is done, faster-

than-light quantum collapse can be understood, and wave/

particle duality can be set aside in favor of oscillating entities

that always have a finite size. Our second change is to mod-

ify the de Broglie relationship such that the momentum and

wave number used in the expression p¼�k are determined

with respect to the source of the wave; we set pS¼�kS. And

our third change is to modify the original Planck relationship

E¼ �x to a new form: ES¼�cxS/vS. Our changes result in

matter-waves that move at the speed of light, allowing us to

avoid infinite and superluminal matter-wave phase veloci-

ties, and we can understand the electron two slit experiment

from any moving frame.

Once our changes were made, we developed new quan-

tum mechanical expressions based on a proposed underlying

subquantum reality that avoids infinities while also enabling

an understanding of the foundations for the Heisenberg

uncertainty principle. This returns physics to a physical

modeling, enabling understanding. We found that only the

time-dependent aspects of Schrodinger’s equation change

due to our approach; the spatial Schrodinger’s equation for

time-independent potentials remains unchanged. Since no

experimental observations exist concerning the frequency of

matter-waves our new approach is consistent with all present

observations.

Yet despite the proposed improvements described

herein, we must admit that we do not yet fully understand

quantum mechanics. Several questions remain concerning

the nature of the subquantum. How does quantum collapse

occur? Are there new forces to discover concerning the

collapse? Is quantum collapse instantaneous or merely

superluminal? How can spin be modeled? Quantum

Electrodynamics (QED) provides an excellent match to

experimental data; can QED somehow be reinterpreted to

be consistent with a realist non-point-like theory? Could

doing so eliminate the infinity problems within QED? Or is

there an alternative to QED that can be just as successful?

These are significant questions that remain for future

research.

Another question for future research involves quantum

collapse to regions where no impulse is required, such as the

slits of the two-slit experiment. Is the source velocity used in

Eqs. (15), (16), and (18) now the velocity of the slitted-wall?

Or is it the velocity of the prior source, since no impulse was

applied to the portion of the wavefunction that passes

through the slits? This question can in principle be answered

experimentally, but at this point it remains open.

Of course, questions will always remain. Physics is an

endeavor wherein we continually probe for an ever deeper

understanding. Yet at each step of this journey, we should

aim to resolve any outright contradictions and paradoxes. By

setting relativity aside for an absolute aetherial theory, and

by modifying the de Broglie and Planck equations, we can

eliminate present contradictions and paradoxes. This gets us

significantly closer to our goal of understanding quantum

mechanics.
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